液状化時の杭基礎構造物の挙動及び補強方法に関する一検討

ハザマ	正会員	足立	有史
ハザマ	正会員	浦野	和彦
ハザマ	正会員	三原	正哉

<u>1. はじめに</u>

大規模地震時において,地盤の液状化に起因するとされる杭 基礎の被害事例が多く報告されている¹⁾。その被害形態も杭の 性状,地盤構成等の違いにより異なる。本研究では,液状化時 の杭基礎の挙動を把握するため,せん断土層を用いた1G場振動 台実験を実施した。実験では地盤の液状化の影響を評価するた め,乾燥砂地盤との比較を中心に検討した。また兵庫県南部地 震以降,設計震度の見直しで補強対策等が要求されるケースが 生じていることから,液状化時の杭に発生する応力を効率的に 低減できる対策工の検討として,著者らが考える2タイプの対策 方法を模型実験に取り入れ,その対策効果についての検討を行 った。

2.振動台実験の概要

図 - 1 に振動台模型の概要図を示す。せん断土層は幅 1.5m× 奥行0.4m×高さ0.6mである。地盤は珪砂5号を用いた2層(上 部層相対密度 Dr=50%,下部層相対密度 Dr=90%)からなる水 平地盤を対象とした。地盤作製は砂を均等に撒き出すことので きる砂まき装置を用い水中落下法により5cm ごとに土層を作 成し,所定の相対密度を確認した。なお,間隙流体は水を用い ている。杭模型は外径19.1mm,肉厚1.2mm,長さ0.6mの鋼 管を4本(2×2)使用し,フーチングを支持している。杭間隔 は0.15m(約7.8D)とし,杭上端はフーチングに剛結,杭下端は 底版に固定とした。各材料の基本物性を表-1に示す。また実 験ケースとしては表-2に示す4ケースを実施した。各ケース とも入力波形は同一とした。計測は図-1に示すように,加速 度計,間隙水圧計,非接触変位計,ひずみゲージを用いて行っ た。なお,ケース3,4で実施した対策方法はそれぞれ図-2に 示すような構造形式である。

3.実験結果および考察

a)乾燥砂地盤と飽和砂地盤の比較

図 - 3 に乾燥砂地盤(ケース1)と飽和砂地盤(ケース2) の側方地盤部の加速度応答の比較を示す。また,図-4,5に杭 頭部(GL-5cm)の曲げひずみ時刻歴を示す。ここで,ケース2 については側方地盤部の過剰間隙水圧時刻歴を併記している。 図 - 4 よりケース2 ではGL-15cm 程度の深さまでの範囲で加 振開始後約1 秒後に過剰間隙水圧が初期鉛直有効応力 vo'に 達し,完全液状化に至ったことがわかる。また,下部層 (Dr=90%)でも,過剰間隙水圧比(Pw/ vo')がピーク時に 0.56 となっている。実験時の地盤状況は,液状化に伴い地表面 に水が湧き上がり,加振終了時点で地表面沈下量が1cm 程度生 じた。図-3 の加速度波形からもケース1では加振中ほぼ一定 の振幅を示しているのに対し,ケース2では上部層において液 状化に達した時刻から加速度応答がほとんどなくなり,その後

図 - 1 振動台模型の概要図(ケース2)

項目			物性値		
地盤	土粒子の密度s	t/m ³	2.633		
	最大密度 dmax	t/m ³	1.75		
	最小密度 _{dmin}	t/m ³	1.48		
	最大粒径	mm	0.85		
	均等係数Uc		2.11		
	乾燥単位体積重量(Dr=50%)	kN/m ³	1.60		
	乾燥単位体積重量(Dr=90%)	kN/m ³	1.71		
	飽和単位体積重量(Dr=50%)	kN/m ³	1.99		
	飽和単位体積重量(Dr=90%)	kN/m ³	2.06		
杭	単位体積重量	kN/m ³	76.5		
	断面積	m²	6.75 × 10 ⁻⁵		
	断面2次モーメント	m ⁴	2.71 × 10 ⁻⁹		
	弾性係数	kN/m ²	2.06 × 10 ⁸		
フーチング	重量	Ν	98.0		
格子状枠	アクリル製(内寸法210mm × 210mm × 150mm, t=5mm)				
板状固化体	石こう(230mm×230mm×60mm)				
	弾性係数	kN/m ²	7.73 × 10 ⁻⁵		

表-1 各材料の基本物性

表-2 実験ケース

ケース名	地盤	対策仕様	入力波形
ケース1	乾燥砂	無し	·正弦波
ケース2	飽和砂	無し	·一定振幅:0.8m/sec ²
ケース3	飽和砂	格子状枠	・周波数 〔4日Z ・継続時間∶10sec+前後1secの
ケース4	飽和砂	板状改良	テーパー部

キーワード:振動台実験 杭 液状化 対策工法

連絡先:〒305-0822 茨城県つくば市苅間 515-1 TEL:0298-58-8813 FAX:0298-58-8819

過剰間隙水圧の低下とともに,応答が回復する傾向にある。

図 - 4,5より杭頭部の曲げひずみ応答を比較してみると,ケー ス1はケース2に比べ最大値で1/4程度と小さく,振幅も比較的 一定である。一方ケース2では加振開始後,過剰間隙水圧が増加 するとともに曲げひずみも徐々に上昇している。表-3にケース 2の曲げひずみの最大値発生時刻での過剰間隙水圧比を示してい るが,上部層で0.5~0.7程度まで過剰間隙水圧比が上昇した時点 で最大曲げひずみを示し,その後完全液状化に達すると急激に低 下している。これは,地盤が完全液状化に至ったことにより流体 状になり,杭に作用する抵抗が減少したためであると考えられる。 その後も徐々に曲げひずみが減少する傾向にあるが,これは地盤 が一旦液状化した後,再堆積に伴い密な状況になったことによる ものと推察される。なお,曲げひずみは固定されている杭の上下 端に向かうほど大きくなる傾向を示した。

<u>b)杭の発生応力低減対策の効果</u>

図 - 6 に杭に作用する最大曲げひずみを低減させる試みとして, 図 - 2 に示したような対策工を施したケース3,4の杭頭曲げひず み時刻歴を示す。また,図 - 7 に最大曲げひずみ分布をケース1,2 の結果と合わせて示す。対策工を施した両ケースの曲げひずみの 発生状況は無対策時(ケース2)と同様に,液状化の進行に伴い 増加し,完全液状化後急激に低下しており,無対策時に比べ最大 曲げひずみは杭上下端で4~5割程度減少した。杭の最大曲げひ ずみについては,ケース3の方がケース4に比べ若干大きい結果 となった。この理由として,ケース4では固化体の設置により杭 中間部を拘束することで,2層ラーメン的な構造となり,杭構造 がより剛になったことによる効果が考えられる。一方ケース3で は格子状枠による拘束効果はあるものの,ケース4に比べ拘束の 度合いが低減された構造となっているものと考えられる。

<u>5.まとめ</u>

本研究では,液状化時の杭の挙動を把握するため,水平地盤を 対象に乾燥砂モデルとの比較を模型振動台実験を実施することに より検討を行った。その結果,液状化によって杭に作用する曲げ ひずみは,過剰間隙水圧が上昇し完全液状化に達する直前で最大

【参考文献】

図-5 杭頭曲げひずみ及び過剰間隙水圧(ケース2)

表-3 最大曲げひずみ時刻の過剰間隙水圧比(ケース2)

深度	曲げピーク時刻	Pw(kPa)	vo'(kPa)	Pw/ vo'		
GL-5cm(ch15)	2.31sec	0.33	0.49	0.68		
GL-15cm(ch13)	2.31sec	0.74	1.46	0.50		
GL-25cm(ch11)	2.31sec	1.00	2.43	0.41		
GL-45cm(ch10)	2.31sec	1.01	4.47	0.23		

1) 土木学会地震工学委員会杭基礎耐震設計研究小委員会:杭基礎の耐震設計法に関するシンポジウム論文集・報告書,2001

2) Iai. SIMILITUDE FOR SHAKING TABLE TESTS ON SOIL-STRUCTURE-FLUID MODEL IN 1-g GRAVITATIONAL FIELD, SOIL AND FOUNDATIONS Vol.29, No.1, 105-118, JSSMFE, 1989.