コンクリートライブラリー154

亜鉛めっき鉄筋を用いるコンクリート構造物の設計・施工指針(案)

目 次

本	編	

1章	総 則	1
1.1	適用の範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2	(用語の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.3	- 工場の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2章	亜鉛めっき鉄筋・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2.1	めっきを施す鉄筋・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2.2	= 亜鉛めっき鉄筋の品質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2	2.2.1 品質の確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2	2.2.2 試験の項目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.3	亜鉛めっき工場での亜鉛めっき鉄筋の取扱いおよび貯蔵・・・・・・・・・・・・・・・・・・・・・・・・・	9
3章	耐久性照査 ······ 1	0
3.1	一般 · · · · · · · · · · · · · · · · · · ·	0
3.2	■ 亜鉛めっき鉄筋の鉄筋腐食に対する照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.3	塩化物イオンの侵入に伴う亜鉛めっきの消耗膜厚の設計値の算定・・・・・・・・・・・・・・・・・・・・・	3
3.4	中性化に伴う亜鉛めっき鉄筋の消耗膜厚の設計値の算定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4章	構造細目 ······ 2	0
4.1	一般 ······2	0
4.2	■ 亜鉛めっき鉄筋の継手・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0

4.3 かぶり ・・・・・・ 21
5章 施 工
5.1 亜鉛めっき鉄筋工 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1.1 亜鉛めっき鉄筋の運搬・保管 ・・・・・ 22
5.1.2 亜鉛めっき鉄筋の加工 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.1.3 亜鉛めっき鉄筋の組立 ・・・・・ 25
5.1.4 鉄筋の継手・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.2 めっき面の補修 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.2.1 一般 · · · · · · · · · · · · · · · · · ·
5.2.2 補修用材料 ···········26
5.2.3 補修方法
5.3 コンクリートの施工 ・・・・・・ 27
5.3.1 一般 · · · · · · · · · · · · · · · · · ·
5.3.2 締固め・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.3.3 打継目
5.3.4 型枠 ・・・・・・・・・・・・・・・29
6章 検 查
6.1 一般
6.2 亜鉛めっき鉄筋の受入れ検査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.3 亜鉛めっき鉄筋の施工時の検査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.3.1 一般
6.3.2 亜鉛めっき鉄筋の施工時のめっき皮膜の検査・・・・・・・・・・・・・・・・・・・・・・・・
6.4 亜鉛めっき鉄筋を用いるコンクリート構造物の検査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7章 工事記録

付属資料

第1	編	事例調査分析	
1.	は	じめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
2.	亜鉀	沿めっき鉄筋の使用事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
2	. 1	国内における施工実績・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
2	. 2	竹原製煉所高煙突の施工事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
2	. 3	海外における施工・調査事例 ·····	39

	2.3.1	米国タッパンジー橋の施工事例・・・・・	39
	2.3.2	北米における橋梁の調査事例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
	2.3.3	バミューダ群島における適用・調査事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
	2.3.4	海外における代表的な適用事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
3.	亜鉛め	っき鉄筋を用いた実構造物および暴露実験調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
3	.1 実樟	構造物調査結果(沖縄美ら海水族館マナティープール館)・・・・・・・・・・・・・・・・・・・・	43
	3.1.1	調査対象構造物の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
	3.1.2	調査内容	44
	3.1.3	調査結果 · · · · · · · · · · · · · · · · · · ·	45
3	.2 暴露	雾実験調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	63
	3.2.1	駿河海岸における暴露実験結果・・・・・	63
	3.2.2	北海道日本海沿岸における暴露実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
4.	腐食防	止機能付き鉄筋の導入に関する調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
4	.1 はじ	じめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
4	.2 港湾	ちコンクリート構造物の耐久性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	71
	4.2.1	設計における維持管理シナリオの基本的な考え方	71
	4.2.2	維持管理を考慮したコンクリート部材の設計・・・・・・・・・・・・・・・・・・・・・・・・	71
4	.3 海外	トでの腐食防食機能付き鉄筋の効果および LCC 比較検証事例・・・・・・・・・・・・・・・・・・・・・・	73
	4.3.1	海外における溶融亜鉛めっき塗装鉄筋の適用事例・・・・・・・・・・・・・・・・・・・・・・	73
	4.3.2	溶融亜鉛めっき鉄筋を使用した実構造物の防食性能の検証例・・・・・・・・・・・・・・・	74
	4.3.3	海外における各種腐食防食機能付き鉄筋を使用した RC 部材の LCC の比較検証事例	75
第2	2編 亜	鉛めっき鉄筋の諸性能	
1.	溶融亜	鉛めっき鉄筋の基本性能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
1	.1 素地	b鉄筋が溶融亜鉛めっき膜厚に及ぼす影響······	79
	1.1.1	けい素(Si)の影響 ······	79
	1.1.2	りん(P)の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
1	.2 溶融	虫亜鉛めっき鉄筋のめっき膜厚のばらつきの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
	1.2.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
	1.2.2	試験概要 • • • • • • • • • • • • • • • • • • •	81
	1.2.3	異形鉄筋の形状がめっき膜厚に及ぼす影響	81
	1.2.4	鉄筋長手方向のめっき膜厚のばらつき評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
1	.3 亜鉛	らめっき鉄筋の表面にみられる変状・・・・・	85
	1 9 1	不めっき	05

		1.3.6	亀裂 ·····	86
		1.3.7	浮き上がり ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
		1.3.8	剥がれ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
2.		亜鉛め	つっき鉄筋の曲げ加工性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
	2.	1 は	じめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
	2.	2 曲	げ加工部の耐食性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
	2.	3 試	験方法 ·····	88
	2.	4 曲	げ加工後の外観変状に対する評価結果·····	90
3.		コンク	リート中亜鉛めっき鉄筋の付着特性・・・・・	94
	3.	1]	ンクリート中における亜鉛めっき鉄筋の腐食と付着特性・・・・・・・・・・・・・・・・・・・・・・	94
		3.1.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
		3.1.2	実験概要 · · · · · · · · · · · · · · · · · · ·	94
		3.1.3	鉄筋とコンクリートとの付着 ・・・・・	95
	3.	2 コ	ンクリート中における亜鉛めっき鉄筋の腐食が付着特性に与える影響	96
		3.2.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
		3.2.2	供試体概要 · · · · · · · · · · · · · · · · · · ·	96
		3.2.3	測定方法 ·····	97
		3.2.4	実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
		3.2.5	考察	98
		3.2.6	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
4.		亜鉛め	つっき鉄筋の継手部の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	00
	4.	1 は	じめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	00
	4.	2 機	滅式継手の力学特性 · · · · · · · · · · · · · · · · · · ·	00
		4.2.1	試験概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	00
		4.2.2	継手具のめっきの状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	00
		4.2.3	斜節 - モルタル充填継手の場合の力学特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
		4.2.4	ネジ節 - モルタル充填継手の場合の力学特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1	03
		4.2.5	ネジ節‐ネジ節鉄筋無機グラウト継手の場合の力学特性・・・・・・・・・・・・・・・・・1	06
	4.	3 ガ	ス圧接継手の力学特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	08
		4.3.1	試験概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	08
		4.3.2	圧接継手の施工状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	08
		4.3.3	斜節の場合の力学特性 ・・・・・・ 1	10
		4.3.4	ネジ節の場合の力学特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11

第	3 編	コンクリート中亜鉛めっき鉄筋の腐食	
1.	コ	ンクリート中亜鉛めっき鉄筋の初期腐食挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
	1.1	はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
	1.2	亜鉛の腐食に与える Ca (OH) 2 の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113

	1.	3 亜銀	沿の不動態の形成領域 · · · · · · · · · · · · · · · · · · ·	114
	1.	4 コン	ノクリート中亜鉛めっき鉄筋の打設直後の腐食挙動と水素脆化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	116
	1.	5 まる	とめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	118
2.		亜鉛め	っき鉄筋を用いたコンクリート供試体の暴露試験結果・・・・・・・・・・・・・・・・・・・・・・・・	120
	2.	1 鹿り	昆島湾(干満帯および海上大気中)での暴露試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	120
	2.	2 沖絲	■県での暴露試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123
	2.	3 福邦	キおよび伊良湖岬(愛知県)での暴露試験(曲げ加工部の腐食)・・・・・・・・・・・・・	125
		2.3.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	125
		2.3.2	曲げ加工と亜鉛めっき皮膜 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
		2.3.3	亜鉛めっき鉄筋の曲げ加工に関する規定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
		2.3.4	亜鉛めっき鉄筋曲げ部の耐食性(文献調査)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
		2.3.5	調査対象サンプル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
		2.3.6	調査項目 ·····	129
		2.3.7	回収試験体の観察結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
		2.3.8	塩分濃度測定結果 ······	130
		2.3.9	中性化深さ測定結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131
		2.3.10	鉄筋の外観観察結果とさび発生面積率の測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131
		2.3.11	腐食電位測定結果 ······	135
		2.3.12	光学顕微鏡による観察結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
		2.3.13	EPMAによる観察結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
		2.3.14	腐食生成物の X 線回折結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	143
		2.3.15	考察	143
	2.	4 まる	とめ ・・・・・	145
3.		モルク	タルのひび割れ部における亜鉛めっき鉄筋の腐食速度の評価・・・・・・・・・・・・・・・・	146
	3.	1 は)	じめに ・・・・・	146
	3.	2 実際) 後手順 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146
	3.	3 実駒	後結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146
		3.3.1	亜鉛めっき鉄筋と普通鉄筋の比較・・・・・	146
		3.3.2	亜鉛めっき鉄筋と普通鉄筋の接続の影響	146
	3.	4 考察	察実験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	147
	3.	5 まる	とめ ・・・・・	147
4.		コンク	リートを模擬した高アルカリ性水溶液中での亜鉛めっき鉄筋の腐食・・・・・・	148
	4.	1 浸1	せきによる腐食速度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	148
	4.	2 電気	気化学的測定による亜鉛めっき鉄筋の腐食速度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	149
5.		コンク	リート中亜鉛めっき鉄筋の腐食速度・・・・・	151
	5.	1 塩額	書 • • • • • • • • • • • • • • • • • • •	151
		5.1.1	塩化物イオンが腐食速度に及ぼす影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	151
		5.1.2	設置される環境が腐食速度に及ぼす影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	151

5.	2	9性化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
第4	編	溶融亜鉛めっき鉄筋に関する規格の比較	
1.	溶	独亜鉛めっき鉄筋に関する規格の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5