複合構造レポート 09

FRP 部材の接合および鋼と FRP の接着接合に関する先端技術

目 次

第1部 FRP 部材接合の設計思想と強度評価

第1章 FRP 構造物の接合部······	3
1.1 FRP 材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.2 FRP 構造物における各種接合方法の分類と典型的な部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.2.1 接合方法の種類・・・・・・	3
1.2.2 FRP 構造物における接合部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1.3 国内外における FRP 接合部の設計思想 · · · · · · · · · · · · · · · · · · ·	3
1.3.1 FRP 接合部の設計に関する基準およびマニュアル・・・・・・・・・・・1	3
1.3.2 FRP 接合部の設計思想の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
1.4 用語の解説 ····································	5
参考文献	6
第2章 ボルト/リベットによるせん断支圧接合	
2.1 接合方法の特徴	
2.1.1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.1.2 せん断支圧接合の荷重伝達メカニズムと破壊形式・・・・・・・・・・・1	
2.2 各破壊形式に対する耐力の評価方法 1	
2.2.1 EUROCOMP における評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.2.2 CNR-DT205/2007 における評価・・・・・2	
2.2.3 ASCE Pre-Standard における評価・・・・・・2	
2.2.4 Composites for Construction における評価・・・・・・・・・・・・・・・2	
2.3 特性値の評価方法 ・・・・・ 2	
2.3.1 支圧強度の評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2	
2.3.2 支圧強度の評価事例	
 2.3.3 その他の特性値の評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
 2.4 設計方法および推奨値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.4.1 適用範囲 · · · · · · · · · · · · · · · · · · ·	2
2.4.2 設計方法と安全係数・・・・・3	
2.4.3 ボルトおよびボルト孔に関する接合の諸元3	7
2.4.4 多列の場合の荷重分担・・・・・3	
2.5 施工における留意点 ・・・・・・ 3	8
2.5.1 ボルト軸力の取り扱い・・・・・3	8

2.5.2	ボルトの嵌合性の向上策・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.6 維持	寺管理 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.7 解約	やすべき課題 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
参考文献	40
	着接合および機械接合と接着接合の併用接合・・・・・・・・・・・・・・・・・・・・・・・・・・・・・43
3.1 接合	合方法の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・43
3.1.2	適用範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.3	荷重伝達メカニズムと破壊形式 · · · · · · · · · · · · · · · · · · ·
3.2 継号	手部の強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.1	各基準で規定されている接着接合の破壊形式 ・・・・・・・・・・・・・・・・47
3.2.2	各基準で規定されている接着接合の強度・耐力評価・・・・・・・・・・・・・・・・・・47
3.2.3	接着接合の強度評価に関する研究事例
3.2.4	併用接合の強度評価に関する研究事例
3.3 設言	+方法および推奨値 ・・・・・・ 60
3. 3. 1	各基準における接着接合の設計方法および推奨値60
3.3.2	各基準で記述されている併用接合の取り扱い・・・・・・・・・・・・・・・・64
3.4 施_	Eにおける留意点 ・・・・・・・・・・・ 65
3. 4. 1	EUROCOMP における規定・・・・・ 65
3. 4. 2	実務面からの留意事項・・・・・・66
3.5 維持	寺管理 •••••••••••••••••67
3. 5. 1	劣化現象と維持管理技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・68
3. 5. 2	接着接合の維持管理に関する研究事例68
3.6 解約	やすべき課題 ・・・・・・・・・・・・・・
参考文献	71
	レトによる摩擦接合への展望・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1 接合	合方法の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 75
4.1.2	適用範囲・・・・・・・・・・・
4.1.3	摩擦接合継手の荷重伝達メカニズムと破壊形式・・・・・・・・・・・・・・・・
4.1.4	既往の研究事例の調査概要・・・・・ 77
4.2 耐ス	り評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2.1	摩擦接合継手の耐力算定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 79
4.2.2	摩擦接合継手のすべり係数およびすべり耐力評価方法・・・・・・・・・・・・ 79
4.2.3	摩擦接合継手のすべり係数およびすべり耐力に関する研究事例 ・・・・・ 80
4.2.4	継手試験における破壊形式

 4.3
 設計方法および推奨値
 89

4.	3.1	設計方法 · · · · · · · · · · · · · · · · · · ·
4.	3.2	すべり係数・・・・・・・・・・・・・・・・・・・・・・・・・・・・89
4.4	施工	こにおける留意点,維持管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・90
4.	4.1	リラクセーションによる軸力の低減・・・・・・・・・・・・・・・・・・・・・・・・・・91
4.	4.2	リラクセーションに関する研究事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・91
4.5	実施	ī例/開発事例 ···········98
4.6	解決	マインを課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・99
参考	文献	

第5章	FRP の特徴を活用したその他の接合方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	101
5.1	接合方法の分類 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	101
5.2	コーン型座金を用いた高強度ボルト接合の開発事例 ・・・・・・・・・・・・・・・・・	102
5.3	細径ピンでの穿孔および細径ボルトの密集配置による接合の開発事例・・・・・	104
5.4	インモールド処理による高靭性界面を有する接着接合の開発事例・・・・・	107
5.5	FRP-金属一体成形の開発事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	111
5.	5.1 ニットファブリックを用いた金属ボルト埋込み一体成形継手・・・・・	111
5.	5.2 孔空処理法による GFRP/金属一体成形継手・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
5.	5.3 Inter-Adherend Fiber を用いた GFRP/アルミニウム合金一体成形継手	115
5.6	嵌合接合系の実施例/開発事例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
5.	6.1 FRP 床版用 Tongue-and-groove 継手・Snap-fit 継手 ・・・・・・	117
5.	6.2 Snap 継手·····	118
5.	6.3 Dovetail 継手·····	119
5.7	その他の形式の実施例/開発事例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	122
5.	7.1 コンクリート充填 FRP 管の定着 ······	122
5.	7.2 CFRP ロッドの鋼製スリーブへの定着・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
5.	7.3 CFRP 管の鋼製スリーブへの定着・・・・・	126
5.	7.4 CFRP 板の鋼製矩形断面定着体への定着・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
5.8	熱可塑性樹脂複合材料に対する溶着接合系の開発事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
5.	8.1 CFRTPの超音波溶着・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
5.	8.2 CFRTP の導電性を利用した自己抵抗溶着 ······	130
5.9	土木構造物への応用性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	132
参考	文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	133

付録1	FRP	橋梁における接合部の設計と施工・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
付録	1.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
付録	1.2	沖縄ロードパーク橋の床組構造の接合部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
付録	1.3	はまなす橋の連結部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139
付録	1.4	ものつくり大学第2連絡橋のガセット接合部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	141
付録	1.5	渡橋(暴露試験装置)の連結部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	143

付録 1.6	玄若橋の連結部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146
参考文献		150

付録 2	ASCE	Pre-	-Sta	nda	rd I:	お	ナる	引	張	波壊	に	対す	トる	」 耐	カ評	価	の係	系数	τ.	• •	•••	•••	 • •	• •	• • • •	151
参考	文献								•••			•••				•••			•••		•••		 • •	• •		157

第2部 鋼構造物の補修・補強のための FRP 接着接合の評価

第1章	FRP 接着による鋼構造物の補修・補強工法の概要・・・・・・・・・・・・	
1.1	FRP 接着による鋼構造物の補修・補強工法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.2	補修・補強材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.3	FRP 接着による補修・補強方法の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.3	.1 軸力を受ける部材の補修の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.3	.2 曲げモーメントを受ける部材の補修・補強の特徴・・・・・・	
1.3	.3 耐疲労性向上を目的とした FRP の利用 ·····	
1.3	.4 桁端腐食部の FRP 接着補修の概要 · · · · · · · · · · · · · · · · · · ·	
1.4	指針・ガイドラインの整備状況と調査の目的・範囲 ・・・・・・	
	τត	
第2章	FRP と接着剤の性質と評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	鋼部材の補修・補強に用いる各材料の概要と性質 ・・・・・	
2.1		
2.1	.2 接合材料の種類と性質・・・・・・・・・・・・・・・・・・・・・・・	
2.2	複合材料のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.2	.1 一方向材の主軸方向フックの法則(2 次元:LT 平面) ・・・・・・	
2.2		
2.2		
2.2		
2.3	. 4 FRP 板の線膨張係数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.0		
2.3	材料物性値の評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	材料物性値の評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	······ 180 ····· 180
2.3 2.3	材料物性値の評価方法 ······ . 1 FRP の評価方法······	· · · · · · · 180 · · · · · · · 180 · · · · · · 181

第3章	接着接合のモデル化と応力評価	185
3.1	FRP が接着された鋼部材の力学的特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	185
3.2	FEM 解析による FRP 接着鋼部材のモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	187
3.3	理論解析および数値解析による FRP 接着鋼部材のモデル化・・・・・・・・・・・・・・	191

		3.	3.1	軸力を受ける部材 ・・・・・ 19	<i>)</i> 1
		3.	3.2	曲げモーメントを受ける部材 ・・・・・ 19	96
	3.	4	FRP	が接着された軸力部材の応力分布・・・・・20)1
		3.	4.1	CFRP 板が接着された軸力を受ける鋼板に生じる応力・・・・・・20)2
		3.	4.2	CFRP 板を接着して2枚の鋼板が接合された部材が軸力を受けて生じる応力・・・・20)2
		3.	4.3	3 枚の CFRP 板が接着された軸力を受ける鋼板に生じる応力・・・・・ 20)2
		3.	4.4	CFRP 板によってプレストレスが導入された鋼板に生じる応力・・・・・ 20)3
		3.	4.5	CFRP 板が接着された鋼板に生じる熱応力・・・・・ 20)3
	3.	5	FRP	が接着された曲げ部材の応力分布・・・・・20)9
		3.	5.1	CFRP 板が接着された等曲げモーメントを受ける鋼部材に生じる応力・・・・・ 20)9
		3.	5.2	CFRP 板が接着された集中荷重を受ける鋼部材に生じる応力・・・・・21	10
		3.	5.3	CFRP 板が接着された鋼部材に生じる熱応力・・・・・・21	10
	参	考	文献		14
第	4 1	章	接着	§接合の定着長と破壊の評価手法 · · · · · · · · · · · · · · · · · · ·	17
	4.	1	FRP	の定着長と応力の収束値・・・・・21	
		4.	1.1	軸力を受ける部材 ・・・・・ 21	
		4.	1.2	曲げモーメントを受ける部材・・・・・21	
		4.	1.3	複数枚の FRP を接着した場合の FRP の定着長 ······ 21	
	4.	2		接着接合の破壊・・・・・・22	
	4.	3	FRP	接着接合の破壊の予測手法・・・・・22	
		4.	3.1	接着剤のせん断応力を用いた破壊評価手法	
		4.	3.2	接着剤の最大主応力を用いた破壊評価手法	
		4.	3.3	接着剤の合成応力度を用いた破壊評価手法	
			3.4	エネルギー解放率を用いた破壊評価手法	
	4.	4	FRP	の端部処理によるはく離荷重の改善 · · · · · · · · · · · · · · · · · · ·	
		4.	4.1	FRP の端部にテーパを設けた場合・・・・・・・・・・・・・・・・・・・・・・・・22	
				FRP の端部に段差を設けた場合・・・・・・・・・・・・・・・・・・・・・・・・22	
				FRP の端部に低弾性接着剤を用いた場合・・・・・・・・・・・・・・・・・・22	
	参	:考	文献		31
	_				
筣	5 1			接着接合の施工例と注意点······23	
	5.			接着接合の施工の現状調査・・・・・23	
			1.1	FRP 接着接合の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23	
			1.2	設計要領・施工マニュアルの調査 ····· 23	
			1.3	接着接合の施工事例の調査 ······23	
			1.4	接着接合の施工フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23	
	5.	2		4の取り扱い上の注意点 · · · · · · · · 23	
	5.	3	FRP	接着施工に対する注意点・・・・・24	10

4

5.3.1 力	施工環境条件····································	40
5.3.2	鋼材表面の下地処理 · · · · · · · · · · · · · · · · · · ·	41
5.3.3 Ż	接着·····24	41
5.3.4 素	養生	44
5.3.5 亻	仕上げ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24	44
5.4 施工品	品質の確保に対する注意点 ・・・・・ 24	45
5.4.1 力	施工中および施工後の品質の確保・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
5.4.2 F	FRP の品質の確保・・・・・・24	45
5.4.3 ¥	現場出来形管理の例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
5.5 維持管	管理 · · · · · · · · · · · · · · · · · · ·	45
5.5.1 力	施工後の維持管理····································	45
بر 5.5.2	点検・補修・取替・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
5.6 施工。	 ・維持管理に対する検討事例 ······2⁴ 	47
5.6.1	供用中の構造物への接着施工・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
5.6.2	ガルバニック腐食・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
参考文献·		50

第6	章	FRP	接着接合の耐久性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		• • • • •	 · 251
6.	1	接着	「接合の耐久性に関する課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		••••	 · 251
6.	2 1	使用	部材の耐久性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		• • • •	 · 252
	6.2	. 1	FRP の耐久性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • •		 · 252
	6.2	2.2	接着剤の耐久性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		• • • •	 · 254
6.	3	熱応	动			 · 257
	6.3	. 1	FRP 接着接合部の温度履歴特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • •		 · 258
	6.3	. 2	熱応力低減の試み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		• • • •	 · 260
6.	4	繰返	をし荷重に対する性能(疲労耐久性) ・・・・・・・・・・・		• • • • •	 · 262
6.	5	クリ	ープに対する性能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			 · 264
参	考文	て献				 · 265

付録1	数值的	解析手法の基礎理論とプログラム例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	269
付録	1.1	数値解析手法の基礎理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	269
付録	1.2	数値解析手法による一軸引張応力状態に対する解	271
付録	1.3	数値解析のプログラム例・・・・・	272
参考	文献·		276

付録 2 国内文献調査リストと文献調査シート 277 277