			目、次	
1.	は	じめ	に	1
	1.1	委員	員会の活動範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	1.2	委員	員会活動の意義	1
	1.3	WC	Gの構成と報告書について	2
2.	Ц	ンク	リート標準示方書における棒部材の設計せん断耐力の変遷	5
-	2.1	はし	こめに	5
	2.2	設訂	+せん断耐力	13
	2.3	設訂	+せん断圧縮破壊耐力	34
	2.4	斜り	り圧縮破壊耐力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
-	2.5	軸	E縮力およびプレストレス力の考慮	45
3.	各	種設	計コードにおけるせん断力に対する設計式の調査	47
	3.1	はし	ごめに	47
	3.2	国网	りの設計コードにおけるせん断耐力算定法	48
	3.	2.1	道路橋示方書・同解説	48
	3.	2.2	鉄道構造物の設計基準	72
	3.	2.3	港湾の施設の技術上の基準・同解説	93
	3.	2.4	原子力発電所屋外重要土木構造物の耐震性能照査指針	95
	3.	2.5	建築分野の規準類・・・・・	123
	3.	2.6	おわりに・・・・	131
	3.3	海夕	トの各種設計コードにおけるせん断力に対する設計式の調査	132
	3.	3.1	Eurocode2	132
	3.	3.2	ACI318-08	144
	3.	3.3	fib Modelcode2010 ·····	147
	3.	3.4	AASHTO	150
	3.	3.5	各種せん断破壊実験に対する海外コードを用いた試算	155
	3.4	コン	>クリート標準示方書と Eurocode2 の比較	186
4.	構	造物	照査における課題提起・・・・・	215
4	4.1	はし	こめに	215
4	4.2	照函	をの手順にみる技術者間の違い	216
2	4.3	Y≞	包橋脚	220
4	4.4	開口	コ部を有する床版・・・・・・	230
4	4.5	ラー	-メン高架橋柱	233
4	4.6	PC	タンク	238
4	4.7	水門	月・堰	244

5.	実構造	物における照査の課題とその対応・・・・・	249
4	5.1 Y	型橋脚の検討	249
	5.1.1	はじめに	249
	5.1.2	FEM 解析による破壊形態の推定	251
	5.1.3	梁モデルによる試算	268
	5.1.4	現行の設計式の適用の可能性・・・・・	284
4	5.2 開	コ部を有する床版の検討	294
	5.2.1	検討内容	294
	5.2.2	標準構造モデルの破壊解析・・・・・	294
	5.2.3	標準構造モデルを用いた境界条件と開口形状の影響評価・・・・・	297
	5.2.4	上部構造モデルを用いた影響評価	302
	5.2.5	せん断耐力に関する考察	305
6.	コンク	リート部材におけるせん断問題に関する現状把握と将来展望	307
(5.1 は	じめに・・・・・	307
(5.2 形	犬の影響	309
	6.2.1	ディープビーム	309
	6.2.2	円形断面, T 形断面	317
(5.3 荷	重条件・境界条件の影響	324
	6.3.1	繰返し荷重	324
	6.3.2	分布荷重・支持条件	328
	6.3.3	プレストレス・軸圧縮力	333
(5.4 材料	斗の影響	338
	6.4.1	コンクリートおよび鉄筋の強度	338
	6.4.2	繊維補強コンクリート・・・・・	343
(5.5 実材	構造レベルにおけるコンクリート部材のせん断耐力に関する検証	351
	6.5.1	はじめに	351
	6.5.2	低収縮型超高強度コンクリートの適用	351
	6.5.3	PC 鋼より線のせん断補強鉄筋への適用	352
	6.5.4	鋼管とプレキャスト PC 部材の接合部の検証	353
	6.5.5	RC ケーソン壁と SC 底版の接合部の検証	354
	6.5.6	PC 構造と SC 構造の接合部の検証	355
	6.5.7	おわりに・・・・	357
(5.6 取	り組むべき課題とその解決に向けた挑戦	358
7.	おわり	に	361
,	付録		363