目 次

はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1
第 I 部 次世代型コンクリート標準示方書への3つの提案
提案 1 コンクリート標準示方書のあり方 3
提案 2 コンクリート標準示方書の作り方 ・・・・・・・・・・・8
提案 3 コンクリート標準示方書の海外への広め方 ・・・・・・・・・12
第 II 部 現行版コンクリート標準示方書にある諸課題の整理
I. 基本原則編(WG1)
1. はじめに・・・・・・・・・・・・・・・・・・・・・・15
2. 短期的な視点・・・・・・・・・・・・・・・・・・・・・・・・・15
2.1 「1章 総則」について・・・・・・・・・・・・・・・・・16
2.2 「 2 章 コンクリート標準示方書の体系と各編の連係」と「 3 章 コンクリート構造物の性
能確保」について・・・・・・・・・・・・・・・・・・・・・・・・16
2.3 「4章 技術者の役割」と「5章 コンクリート構造物の環境性」について … 17
3. 中・長期的な視点・・・・・・・・・・・・・18
II. 設計編・維持管理編の課題と展望 (WG2)
1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・20
2. 設計編:安全性に関して・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.1 せん断耐力の算定に関する検討・・・・・・・・25
2.1.1 せん断補強鉄筋を多量に配置した棒部材のせん断耐力
2.1.2 コンクリートの体積変化がせん断耐力に与える影響
2.2 疲労の照査・・・・・・・・・・・・・・・・・・・・・・34
2.2.1 疲労照査の体系と作用の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2.2 応答値の算定と限界値の設定・・・・・・・・・・・37
2.3 プレストレストコンクリート・・・・・・・・・38
2.3.1 2012 年制定示方書での改訂内容 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.3.2 今後の検討課題・・・・・・・・・・・・・・・・38
2.4 ねじりを受ける部材の変形性能 (損傷レベル) の照査 · · · · · 40
2.4.1 課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.4.2 今後の展望・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

3.	設計編:	: 耐久性・時間依存に関して・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
3. 1	塩害に	こ対する照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
	3. 1. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
	3. 1. 2	塩害環境下における RC 構造物の評価における課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
	3. 1. 3	鉄筋コンクリートの鋼材腐食に関する試算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
	3. 1. 4	おわりに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
3. 2	中性化	とに関する照査の現状と課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	3. 2. 1	コンクリート標準示方書標準における中性化深さの設計	48
	3. 2. 2	中性化深さ予測における課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
3. 3	多重防	5護の考え方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
	3. 3. 1	劣化予測式の確立が難しい劣化事象の耐久設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
	3. 3. 2	多重防護による信頼性確保・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
	3. 3. 3	RC 床版の耐久性確保における多重防護の適用事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
	3. 3. 4	信頼性確保の照査フレーム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
3. 4	温度で	♪び割れに対する照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
	3. 4. 1	コンクリート標準示方書の現行の照査方法と今後の課題 · · · · · · · · · · · · · · · · · · ·	55
	3. 4. 2	実設計への適用とその課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
3. 5	長期の	つ変位・変形の算定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
4.	設計編:	: 耐震性に関して·····	60
4. 1	地盤の	つモデル化に関して・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
4. 2	過大な	なかぶりに対する検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	64
	4. 2. 1	改訂の経緯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	64
	4. 2. 2	過大なかぶりの問題点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	64
	4. 2. 3	比較的かぶりが大きい柱断面に対する解析検討の例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	64
4. 3)終局とそれ以降・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4. 3. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
	4. 3. 2	他学協会,設計基準における冗長性・頑健性の考え方および評価方法	67
	4. 3. 3	冗長性・頑健性評価の今後の方向性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	68
5.	設計編:	: 非線形有限要素解析による照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
5. 1	V&V (C	-ついて······	70
	5. 1. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
	5. 1. 2	V&V とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
	5. 1. 3	V&V に関する国内外の動向	72
	5. 1. 4	2012 年版示方書における V&V に関する記述の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
	5. 1. 5	示方書における V&V のあるべき姿・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5. 2	作用の	ワモデル化について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77

6.	設計編:	構造細目・仕様規定の照査化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
6. 1	鉄筋配	P置に関する規定の照査化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
	6. 1. 1	鉄筋のあきと施工性照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
	6. 1. 2	せん断補強筋の最少量と最大間隔・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
6.2	部材の)構造細目の照査化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
	6. 2. 1	ハンチの規定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
	6. 2. 2	構造細目の照査化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
7.	維持管理	1編:構造性能に基づいた維持管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
7. 1	維持管	理編における性能判定について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
7.2	設計編	晶と維持管理編の連係について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
	7. 2. 1	課題の整理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
	7. 2. 2	今後の展望・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
III		編・規準編の将来への提言(WG3)	
1.	はじめに	<u> </u>	86
2.		§理······	
2.1	施工編	幅の意義・役割・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
2.2		幅の意義・役割・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.3	性能と	:品質に関する論考・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
	2. 3. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
	2.3.2	「コンクリート構造設計施工規準ー性能創造型設計ー」における用語の定義・・・・	92
	2. 3. 3	土木学会「高流動コンクリート施工指針」における用語の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
	2. 3. 4	吉田徳次郎先生の「コンクリート及鉄筋コンクリート施工方法」	
		における「品質」の議論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
	2. 3. 5	コンクリート標準示方書 [施工編] における「品質」についての議論・・・・・・・	96
	2.3.6	コンクリート標準示方書における「性能」と「所要の品質」	96
	2. 3. 7	今後の「品質」の議論を深めるための方向性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
3.	設計編と	:施工編の連係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
3. 1	設計と	:施工の連関の現状と課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
	3. 1. 1	設計者と施工者の関係(吉田徳次郎博士の指摘より)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
	3. 1. 2	設計者と施工者の意識 (341 委員会実施のアンケート結果より) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
	3. 1. 3	設計と施工の連関 (341 委員会作成の相互連関図より)	102
	3. 1. 4	設計者と施工者をつなぐ示方書のあり方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	105
3. 2	設計段	と階で考慮すべき施工性能と施工を想定して配慮すべき項目・方法	105
	3. 2. 1	設計段階で施工性能を考慮する必要性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	105
	3. 2. 2	設計段階で考慮すべき施工性能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106

3.3	コンク	リート工事の施工性能を確保するための方策・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
3.4	発注シ	⁄ステムの現状と課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	108
4.	フレッシ	⁄ュコンクリートの品質評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110
4. 1	フレッ	,シュコンクリートの性質	110
	4.1.1	スランプの意味と役割・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110
4.2	ブリー	-ディングの抑制について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
4.3	評価討	、験方法の体系化に向けて・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	115
5.	施工方法	こと硬化コンクリートの品質/部材・構造物の性能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
5. 1	施工力	7法(養生)とコンクリートの表層品質の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
	5. 1. 1	施工や養生の取り扱い・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
	5. 1. 2	養生方法と養生期間・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	118
	5. 1. 3	養生の影響範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	119
	5. 1. 4	養生の影響度 (W/C やセメント種類)	121
5. 2	養生に	こよる表層品質の向上技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
	5. 2. 1	養生による表層品質を向上させる新しい技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
	5. 2. 2	新しい養生技術の提案・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
	5. 2. 3	適切な養生方法と養生期間の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	125
5.3	コンク	リート構造物の耐久性に及ぼす水の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
	5. 3. 1	コンクリート構造物に対する水のはたらきと副作用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
	5. 3. 2	コンクリート構造物の設計・施工・維持管理と水・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	5. 3. 3	中性化にみる水の作用······	126
5. 4	コンク	リート表層品質の検査とその後の対応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
	5. 4. 1	施工後表層品質の検査方法と維持管理への橋渡し(初期値)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
	5. 4. 2	表面保護技術の活用 (表層品質 NG の場合の対策) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	129
5. 5	示方書	F施工編における品質管理·検査の取扱いと非破壊試験の活用展望 · · · · · · · · · ·	
	5. 5. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
	5. 5. 2	施工の自由度とその効果に対する評価技術の必要性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
	5. 5. 3	施工における性能評価技術の確立に不可欠なコンクリート構造物の評価・・・・・	131
	5. 5. 4	品質管理と構造物の検査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131
	5. 5. 5	示方書施工編における構造物検査の記述変遷・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	132
6.	暑中・寒	『中コンクリートへの提言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	133
6. 1	暑中コ	コンクリートのコンクリート温度上限規定について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	133
	6. 1. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	133
	6. 1. 2	運搬によるコンクリート温度上昇の可能性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	133
	6. 1. 3	コンクリートの品質確認項目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	134
	6. 1. 4	暑中期の硬化コンクリートの品質課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135

	6. 1. 5	長期的な強度増進の鈍化・・・・・・・・137
	6. 1. 6	耐久性への悪影響について・・・・・・・138
6.2	寒中ニ	コンクリートの混合セメントの取扱い・・・・・・・・・・・ 139
7. 🕏	示方書の)活用・実践・レベルアップ・・・・・・・141
7. 1	施工に	こおける PDCA サイクルの重要性・・・・・・・・・・141
	7. 1. 1	建設プロセスにおける PDCA サイクル・・・・・・・ 141
	7. 1. 2	施工における PDCA サイクルの重要性と普及に向けた課題 · · · · · · · 141
7.2	施工の)基本事項の遵守のための実践的な取組み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	7. 2. 1	山口県のひび割れ抑制システム・・・・・・ 142
	7. 2. 2	東北の復興道路のコンクリート構造物の品質確保・・・・・・・・146
7.3	施工と	:性能確保,経済性,ライフサイクルコスト・・・・・・・・・・・・・ 149
8. ‡	見準編の)課題と今後の方向性······151
8.1	利用者	fへの提供形態・方法······ 151
	8.1.1	はじめに・・・・・・・・151
	8.1.2	規準編利用者へのアンケート・・・・・・ 151
	8. 1. 3	規準関連小委員会内の意見・・・・・・・153
	8.1.4	まとめ・・・・・・・・153
8.2		aと示方書各編の連係について・・・・・・ 154
8.3		への情報発信・・・・・・・・・・・・・・・・・・・・・・ 155
8.4		1 織との連係・・・・・・・・・・・・・・・・・・・・・・・ 156
8.5	ISO ^	の対応と成功例・・・・・・・・・・・157
	8. 5. 1	「コンクリート用化学混和剤」の ISO 化への取り組み・・・・・・・・・ 157
	8. 5. 2	「コンクリート用化学混和剤」の ISO 化への課題 · · · · · · · · · · · · · · · · 158
	8. 5. 3	課題解決のための対応・・・・・・ 159
	8.5.4	今後について・・・・・・・159
IV.		è討(WG4)
		<u> </u>
2. 2		・2013年版コンクリート標準示方書の改訂内容に関する事例検討 ・・・・・・ 161
2. 1	PC 上岩	87. 構造の長期たわみ・・・・・・・・・・・・・・・・・・・・・・ 161
	2. 1. 1	改訂内容 · · · · · · · · 161
	2.1.2	検討方法・・・・・・・・・161
	2. 1. 3	長期たわみの解析結果・・・・・ 163
	2. 1. 4	配合条件(水セメント比)および環境条件(外気の湿度)
		による長期たわみの影響・・・・・・・164
	2. 1. 5	設計解への影響······ 165

2.2	棒部材	すのせん断耐力算定式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 166
	2. 2. 1	改訂内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 166
	2. 2. 2	検討方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 167
	2. 2. 3	プレストレストコンクリート棒部材のせん断耐力式による検討	 168
	2. 2. 4	既設 PC 橋梁 (鉄道 PC 橋) における検討事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 172
	2. 2. 5	設計解への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 174
2.3	耐震部	安計····	 175
	2. 3. 1	改訂内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 175
	2.3.2	曲げ降伏後のせん断破壊モードの判定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 175
	2.3.3	検討方法および検討結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 176
	2.3.4	設計解への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 177
2. 4	設計•	・施工・維持管理の各作業で共有すべき情報の整理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 178
	2.4.1	示方書における情報伝達・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 178
	2.4.2	情報伝達のための設計図の例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 179
	2.4.3	各工程への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 182
3.	設計編と	:維持管理編の一体化に向けた諸課題の整理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 183
4.	設計編と	:施工編を一体利用した事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 185
4. 1	ラーメ	くン橋柱頭部の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 185
4. 2	コンク	フリートの品質に影響を与える施工条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 186
	4. 2. 1	打設リフト割・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 186
	4. 2. 2	スランプ設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 187
4. 3	温度解	¥析の実施例·····	 188
	4. 3. 1	対象橋梁・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 188
	4. 3. 2	解析条件	 188
	4. 3. 3	解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 189
	4. 3. 4	解析結果の反映・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 190