目 次

【第 I 編 委員会の活動概要】

1.	委	員会設立の	背景と	主旨 ··			•••										 1
2.	委	員会の活動	概要			••••	••••									••••	 3
2.	1	鉄筋コンクリ	ノート権	構造の疲労研	皮壊研	究小	委員	会の	活動	既要と	: WG (の構成	ζ			· • • •	 3
2.	2	用語の定義					•••								• • • •	· • • •	 6
2.	3	機構解明 WG	(WG1)	の研究活動	b		•••			• • • •				• • • •	• • • •	• • • •	 10
2.	4	性能評価 WG	(WG2)	の研究活動	b		• • • •							• • • •	• • • •	•••	 11
З.	ま	とめと今後	の課題				•••									• • • •	 12

【第Ⅱ編 鉄筋コンクリート構造の疲労破壊機構検討】

1. はじめに	15
1.1 第Ⅱ編の構成 ····································	15
1.2 用語に関する注意 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
2. 構造物の疲労に関する構造物の照査の現状と課題	18
2.1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
2.2 変動作用とそれによって生じる応答の評価	19
2.2.1 損傷を生じさせる変動作用	19
2.2.2 変動作用によって生じる応答	24
2.3 構造物の疲労破壊に対する照査法の現状	39
2.3.1 現行の各種設計基準における疲労破壊に対する照査の概要	39
2.3.2 鋼構造物の疲労破壊に対する照査法	47
2.3.3 RC 構造物の疲労破壊に対する照査法 ····································	51
2.4 2章のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
3. コンクリートの疲労破壊	55
3.1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
3.2 コンクリートの疲労破壊	55
3.2.1 圧縮の繰返し作用によるコンクリートの破壊	55
3.2.2 引張および曲げの繰返し作用によるコンクリートの破壊	59

3.2.3 コンクリートの疲労破壊に対する課題	59
3.3 繰返し作用下のコンクリートの力学モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
3.3.1 FEMによる繰返し荷重に対する損傷モデル ····································	61
3.3.2 RBSMによる繰返し荷重に対する損傷モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
3.4 荷重振幅の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3.4.1 コンクリートへのマイナー則の適用 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3.4.2 荷重振幅の影響に対する実験的検証	74
3.4.3 荷重振幅の影響に対する数値解析的検証	75
3.5 材料劣化および水や環境温度の損傷への影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
3.5.1 凍結融解の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
3.5.2 ASR の影響 ···································	83
3.5.3 水の影響	85
3.6 3章のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
4. 鉄筋および付着の疲労破壊	89
4.1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
4.2 鉄筋の疲労破壊	89
4.2.1 異形鉄筋普及初期の研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
4.2.2 異形鉄筋の疲労強度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
4.2.3 丸鋼の疲労強度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
4.2.4 腐食した鉄筋の疲労強度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
4.3 繰返し作用による付着の低下	96
4.3.1 繰返し作用による付着の低下 ····································	96
4.3.2 鉄筋腐食および水の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
4.4 4章のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
5. 鉄筋コンクリート構造の疲労破壊に関する最近の研究	100
5.1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
5.2 RC 床版の感度解析に基づく影響度分析 ······	100
5.3 RC 部材の材料劣化および水や環境温度の損傷への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	114
5.3.1 塩害を生じた RC 床版の繰返し作用による損傷・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	114
5.3.2 ASR を生じた RC および PC 部材の繰返し作用による損傷 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	118
5.3.3 含水状態にある RC およびモルタル部材の繰返し作用による損傷 ・・・・・・・・・・・・・・・	125
5.3.4 低温環境での RC 部材の繰返し作用による損傷・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	129
5.3.5 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	137
5.4 補修補強された RC 部材の繰返し作用による損傷の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
5.4.1 せん断ひび割れに樹脂を注入した RC はりの修復性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
5.4.2 RC 床版に対する FRP シート補強効果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	144

5.	5	風耳	車 RC 基	 礎 接	合部	の繰	返し	作用	引こ。	よる	損傷	<u></u> 。			•••			•••		• • •		•••	•••	 149
5.	6	5章	章のま	とめ			•••		· • • •	• • • •					•••		• • •	•••		• • •	• • •		•••	 154
6.	釸	⊧筋=	コンク	リー	ト構	造σ)疲ら	労お	よて	「疲	労젟	皮壊	にす	付す	る見	<u>ඇ</u>	法の	提到	聚			•••	•••	 155
6.	1	はじ	こめに	••••			•••		· • • •	•••					•••		• • •	• • • •			• • •	•••	•••	 155
6.	2	現物	犬の照	査法			• • •			•••					•••			• • •					•••	 156
	6.	2. 1	疲労	破壊	こ対す	する見	留査(の方	法··	•••					•••			••••				•••	•••	 156
	6.	2. 2	応答	値の領	算出		•••		••••	•••					•••			•••		•••		•••	•••	 158
	6.	2. 3	限界	値の領	算出		•••		••••	•••					•••			•••		•••		•••	•••	 160
6.	3	残存	氵耐力	に基	づく見	照査 フ	5法1	こ関	する	検討	対・・				•••			•••				•••	•••	 164
	6.	3. 1	照査	の考え	え方		•••		••••	• • • •					•••			••••				•••	•••	 164
	6.	3. 2	応力	とひて	ずみに	こ基つ	づく:	コン	クリ	—	トの	損傷	豪評	価指	標			••••				•••	•••	 168
6.	4	残存	氵耐力	に基	づくI	RC は	りの	解析	f的材	検討	• • • •				•••			••••		•••		•••	•••	 173
	6.	4. 1	解析	モデノ	ルの	選定と	と構築	<u></u> れてい たい	••••	•••		•••			•••			•••				•••	•••	 173
	6.	4. 2	解析	結果			•••		••••	• • • •					•••			••••				•••	•••	 176
6.	5	残存	「ション	に基	づく	RC 床	版の	解析	f的材	倹討	•				•••			• • •				••••	•••	 183
	6.	5.1	解析	モデノ	ルの	選定と	と構築	<u> れい</u>	••••	•••					•••			• • •		•••		• • • •	•••	 183
	6.	5. 2	解析	結果			• • •			•••					•••			• • •				••••	•••	 184
6.	6	6章	章のま	とめ			• • • •		••••	• • • •					•••			•••				•••	•••	 187
7.	お	ふわり	リに・	••••			• • •		· · · ·	•••					•••					•••			•••	 188

【第Ⅲ編 道路橋コンクリート床版を対象とした性能評価】

1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	189
2. 道路橋 RC 床版の性能評価 · · · · · · · · · · · · · · · · · · ·	190
2.1 性能評価の枠組み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
2.1.1 性能評価とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
2.1.2 包括設計コードにおける要求性能と性能規定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
2.2 道路橋 RC 床版の性能評価の現状とあるべき方向性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	191
2.2.1 道路橋 RC 床版の性能評価の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	191
2.2.2 RC 床版の性能評価のあるべき方向性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	195
2.2.3 RC 床版の性能評価の方法例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	200
3. 変動作用を伴う床版損傷事例 ······	204
3.1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	204

3.2 RC 床版の損傷事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	204
3.2.1 2方向ひび割れの進行によるせん断押抜き破壊・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	204
3.2.2 床版上面の砂利化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	210
3. 2. 3 ASR·····	213
3. 2. 4 凍害・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	218
3. 2. 5 塩害· · · · · · · · · · · · · · · · · · ·	220
3. 2. 6 ひび割れ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	221
3.2.7 ポットホール ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	223
3.3 課題解決に必要な着眼点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	227
4. 材料設計と材料の品質確保 ····································	229
4.1 要求性能に対する材料設計・品質確保の位置づけ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	229
4.2 RC 床版の主な劣化現象と要求性能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	231
4.3 RC 床版の要求性能を確保するための材料の活用 · · · · · · · · · · · · · · · · · · ·	234
4.3.1 RC 床版に用いる高機能材料の活用とその効果 ····································	234
4.3.2 アスファルト舗装および防水材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	256
4.4 欧米における床版高耐久化に向けた取組・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	262
4.4.1 米国での橋梁 RC 床版実態調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	262
4.4.2 ドイツでの床版高耐久化に向けた取り組み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	265
4.5 材料を取り巻く諸課題・留意点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	268
4.5.1 材料劣化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	268
4.5.2 養生材・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	278
4.5.3 養生剤, 床版防水工との相性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	282
5. 設計の配慮	285
5.1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	285
5.2 荷重作用に対する設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	285
5.2.1 設計の基本・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	285
5.2.2 荷重による応答値の低減・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	285
5.2.3 部材の抵抗性の向上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	287
5.3 環境作用に対する設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	288
5.3.1 設計の基本・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	288
5.3.2 凍害・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	288
5.3.3 塩害・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	288
5.3.4 水 · · · · · · · · · · · · · · · · · ·	289
5.4 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	290
6 品質を確保するための施工・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	292

.1 耐疲労性を確保するための施工面での課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	292
.2 床版防水工の施工のポイント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	293
6.2.1 被膜養生剤,補修材との相性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	295
6.2.2 床版仕上げ面がもたらす防水工への影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	296
6.2.3 床版仕上げ面の施工の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	298
.3 床版の平坦性確保・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	302
6.3.1 床版の平坦性の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	302
6.3.2 防水工・舗装の施工性や排水から求められる床版の平坦性・・・・・・・・・・・・・・・・・・	311
6.3.3 床版の平滑度を向上させる仕上げ技術の開発事例 ·····	312
診断および補修・補強・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	327
.1 診断のための点検・調査, モニタリング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	327
7.1.1 点検・調査の手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	327
7.1.2 光ファイバセンサを適用したモニタリング手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	335
2 調査項目および方法の選定と結果の活用における留意点 ・・・・・・・・・・・・・・・・・・・・・・・・・	342
3 数値解析による各種床版補強工法の補強効果の試算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	344
RC 床版の設計・施工・維持管理の先進事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	354
.1 凍結防止剤散布下での床版の耐久性確保の事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	354
8.1.1 多重防護の考え方····································	354
8.1.2 RC 床版の膨張収縮挙動及び表層品質に関する実物大実験 ····································	356
8.1.3 フライアッシュコンクリートによる高耐久 RC 床版の実施工・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	359
.2 重交通での床版打換え時の耐疲労性確保の事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	363
おわりに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	373
.1 本委員会の取り組みにより得られた知見の整理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	373
.2 あるべき方向性の提案・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	374
「「「「」」「」」「」」「」」「」」「」」「」」「」」「」」	
施工時の品質確保に関する座談会議事録・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	377
1 座談会の経緯····································	377

1. 2	開催日時、出席者・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	377
1.3	座談会での討議内容	378
1.4	床版の施工に関わる課題の整理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	387