鋼構造シリーズ 20 鋼斜張橋 - 技術とその変遷 -【2010 年版】

目 次

1. 概説

1.1 歴史と展望・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
1.1.1	斜張橋の歴史······1			
1.1.2	近代斜張橋の始まり(1950~60年代)			
1.1.3	斜張橋の発展(1970~80年代)			
1.1.4	斜張橋の長大化(1990年代)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
1.1.5	現代の斜張橋 (2000 年以降) ・・・・・・・・・・・・・・・・・・・・・・・5			
1.1.6	今後の展望・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
1.2 斜張橋の種類・・・・・				
1.2.1	構造要素による分類······8			
1.2.2	材料による分類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10			
1.2.3	用途による分類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10			
1.2.4	斜張形式を応用した橋梁・構造システム・・・・・10			

2. 設計

2.1 設計	·一般······	13
2.1.1	斜張橋の特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2.1.2	力学的特性	14
2.1.3	設計法·····	17
2.2 解析		22
2.2.1	概 説	22
2.2.2	構造のモデル化・・・・・	22
2.2.3	静的解析·····	22
2.2.4	動的解析·····	24
2.2.5	座屈耐荷力解析·····	24
2.2.6	FEM 解析 · · · · · · · · · · · · · · · · · ·	27
2.2.7	解体計算	27
2.2.8	複合斜張橋の解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
2.3 部材	設計	29
2.3.1	主桁·····	29
2.3.2	塔	37
2.3.3	ケーブル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
2.3.4	支承	49
2.3.5	伸縮装置······	54
2.4 耐風	記書 라 · · · · · · · · · · · · · · · · · · ·	55
2 4 1	橋辺に及ぼす風の作用・・・・・	55

2.4.2	耐風設計の考え方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 58
2.4.3	耐風対策・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 60
2.5 耐震	設計	· 67
2.5.1	概要(兵庫県南部地震以降の耐震設計)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 67
2.5.2	既設斜張橋の耐震構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 75
2.5.3	新設斜張橋の耐震構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 88
2.6 景観	設計	· 90
2.6.1	景観設計の基本的考え方・・・・・	· 90
2.6.2	景観設計の進め方・・・・・	· 90
2.6.3	景観設計に配慮すべき要素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 91
2.6.4	景観設計の検討手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 93

3. 製作と架設

3.1 製作	
3.1.1	製作設備の自動化と製作手順の合理化・・・・・103
3.1.2	製作精度と品質管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・105
3.1.3	工場での大ブロック化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・107
3.2 架設	
3.2.1	創生期, 発展期の架設工法(1950年代~1990年ごろまで)・・・・・・108
3.2.2	成熟期の架設工法(1990年代~)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.3	各部材の架設工法
3.3 現場	施工管理······117
3. 3. 1	概要
3. 3. 2	形状管理と応力管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・117
3. 3. 3	形状及び応力管理の手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・118
3. 3. 4	今後の傾向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

4. 複合斜張橋

4.1	概要		127
4.2	塔に	コンクリートを使用する複合斜張橋・・・・・	128
4	. 2. 1	塔の全体形状と構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
4	. 2. 2	塔の断面形状・・・・・	129
4	. 2. 3	塔におけるケーブル定着形式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
4.3	側径	間をコンクリート桁とする複合斜張橋・・・・・	131
4	. 3. 1	コンクリート桁の構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131
4	. 3. 2	鋼桁とコンクリート桁の接合部	131
4	. 3. 3	クリープ・乾燥収縮の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
4	. 3. 4	コンクリート桁におけるケーブルの定着形式	137
4	. 3. 5	鋼桁におけるケーブルの定着形式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	137

4.4	合成	桁を使用した複合斜張橋・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
4	. 4. 1	RC 床版を使用する場合 · · · · · · · · · · · · · · · · · · ·	138
4	. 4. 2	合成鋼床版を使用する場合・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	139

5. 維持管理

	5.1	概要	
	5.2	維持	管理の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.3	斜張	橋の維持管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.	. 3. 1	維持管理の考え方・・・・・144
	5.	. 3. 2	設計段階で考慮すべき事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・145
	5.	. 3. 3	維持管理設備の実例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.4 維持管理の事例・・・・・14			
	5.	. 4. 1	概要 ····· 147
	5.	. 4. 2	ケーブルの維持管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・148
	5.	. 4. 3	斜張橋維持管理に関するアンケート・・・・・149

6. 実績調査

6.1	実績データ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 153
6	5.1.1 鋼斜張橋······	· 153
6	5.1.2 PC 斜張橋 · · · · · · · · · · · · · · · · · · ·	· 251
6.2	データ分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 256
6.3	文献・・・・・	· 261

口絵

東神戸大橋	鶴見つばさ橋
名港トリトン	多々羅大橋
揖斐川橋	日本・エジプト友好橋
Rion-Antirion 橋	Millau 高架橋
Bihn 橋	女神大橋
Sutong 橋	鷹島肥前大橋
Stonecutters 橋	Can Tho 橋
Incheon 橋	